
Retreat 2003

Overview

• Shared Applications
• Shared Browser

Retreat 2003

Why Shared Applications
• Past application-sharing success

• DPPT
• Big win for remote collaboration
• Not integrated with the venue

• Goals
• Enable users in a Venue to share applications
• Integrate startup with the venue client
• Allow storage of application state in the venue
• Provide coherent state through event distribution

Retreat 2003

Application Architecture:
Venue Side
• An Application Factory

creates Venue-resident
applications.

• Each application is
represented in the
venue by an
Application Object

• An application object
can store local data and
can have one event
channel

• Event channels utilize a
Venue-based Event
Service

Venue
Event Service

Application Object
name
type
webServiceUri
channel

Event Channel

Local Data

Application
Factory

Retreat 2003

Venue

Application Architecture:
User Side

• On the user side the Venue
Client is the key.

• The user can install
applications, which are then
available to the Venue Client.

• When a user enters a Venue,
if there are application objects,
the Venue Client looks for
applications that are of the
same type.

• The Venue Client also enables
the user to start a local
application, and create the
Application Object in the Venue

Venue Client
Application Client

Type: X

Application Client
Type: Y

Application Client
Type: Z

Venue State
(Including Application Objects)

Retreat 2003

Getting of Initial State
(Optional)

• Application Objects that maintain state
can provide access to that state via a
Web Services Interface.

• The Application Client is responsible for
storing/retrieving the state via the
Application Object.

Retreat 2003

Applications Interface
• Venue

• CreateApplication : appObjUrl
• DestroyApplication

• ApplicationObject
• Join : privateId
• Leave
• GetDataChannel (channelId,
eventServiceLocation)

• GetData
• SetData

Retreat 2003

Typical application startup

ApplicationClient

Join

privateId

GetDataChannel

GetData

appData

VenueClient

ApplicationObject
execute client

appObjectUrl

application executes

channelId,
eventServiceLocation

EventClient

RegisterCallback

Retreat 2003

Shared Web Browser
• Application task: Web browsing
• Goal: All users see the same page
• The Venue serves as a rendezvous mechanism
• Application state: webpage URL
• State is distributed; that is, there is no central server

maintaining the state
• With each state change, an event is distributed to all

interested clients

Retreat 2003

Shared
Browser Client

#1

Shared
Browser Client

#2

Shared
Browser Client

#3

Event Service

Channel.Send (“browse”,
{id, “http://...”})

Venue
Application::

name=“Shared Browser”
type=“SharedWeb”
webServiceUri=None
channel = “<channelid>”

HandleEvent(“browse”,
{id, http://...})

HandleEvent(“browse”,
{id, “http://...”})

Shared Web Browser Architecture
(stateless)

Retreat 2003

Channel.Send (“browse”,
{id, “http://...”})

HandleEvent(“browse”,
{id, http://...})

HandleEvent(“browse”,
{id, “http://...”})

Shared
Browser Client

#2

Shared
Browser Client

#3

Event Service

Venue
Application::

name=“Shared Browser”
type=“SharedWeb”
webServiceUri=None
channel = “<channelid>”

Shared Web Browser Architecture
(stateful)

Shared
Browser Client

#1

appProxy.SetData(self.privateId,
"url", “http://...”)

Shared
Browser Client

#4

url = appProxy.SetData(self.privateId,
“url”l)

Retreat 2003

Shared Browser sample

Retreat 2003

The Point is…
Shared application development is easy.

Application

Application
Object

Venue

Interface

AppClient
glue

• Assuming the existence of
a suitable interface, one
need only write a small
amount of glue code

• Among the AG2
deliverables is a document
describing this
development

